Distinct mechanisms control contrast adaptation over different timescales.

نویسندگان

  • Min Bao
  • Elizabeth Fast
  • Juraj Mesik
  • Stephen Engel
چکیده

Changes to the visual environment can happen at many timescales, from very transient to semi-permanent. To adapt optimally, the visual system also adjusts at different timescales, with longer-lasting environmental changes producing longer-lasting effects, but how the visual system adapts in this way remains unknown. Here, we show that contrast adaptation-the most-studied form of visual adaptation-has multiple controllers, each operating over a different time scale. In a series of experiments, subjects completed either a contrast matching, contrast detection, or tilt adjustment task, while adapting to contrast at one orientation. Following a relatively longer period (5 min) of adaptation to high contrast, subjects were "deadapted" for a shorter period (e.g., 40 s) to a lower contrast. Deadaptation eliminated perceptual aftereffects of adaptation, but continued testing in a neutral environment revealed their striking recovery. These results suggest the following account: Adaptation was controlled by at least two mechanisms, with initial adaptation affecting a longer-term one and deadaptation affecting a shorter-term one in the opposite direction. Immediately following deadaptation, the effects of the two mechanisms cancelled each other, but the short-term effects rapidly decayed, revealing ongoing longer-term adaptation. A single controlling mechanism cannot account for the observed recovery of effects, since once deadaptation cancels the initial longer-term adaptation, no trace of it remains. Combined with previous results at very long adaptation durations, the present results suggest that contrast adaptation is possibly controlled by a continuum of mechanisms acting over a large range of timescales.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iranian EFL Learners’ Motivational Fluctuation in Task Performance over Different Timescales

Motivation for learning a new language is both self and time-oriented. The language learner’s motivation experiences gradual fluctuation over time and the view of oneself is different on each timescale of the study. Interaction among different timescales throughout the Second Language Development (SLD) is a novel area of investigation (de Bot, 2015). In order to probe this interactive nature, t...

متن کامل

The McCollough effect reflects permanent and transient adaptation in early visual cortex.

The brain encounters input varying with many different time courses. Given such temporal variability, it would seem practical for adaptation to operate at multiple timescales. Indeed, to account for peculiar effects such as spacing, savings, and spontaneous recovery, many recent models of learning and adaptation have postulated multiple mechanisms operating at different timescales. However, des...

متن کامل

Spontaneous recovery of effects of contrast adaptation without awareness

Prolonged exposure to a high contrast stimulus reduces the neural sensitivity to subsequent similar patterns. Recent work has disclosed that contrast adaptation is controlled by multiple mechanisms operating over differing timescales. Adaptation to high contrast for a relatively longer period can be rapidly eliminated by adaptation to a lower contrast (or meanfield in the present study). Such r...

متن کامل

CaMKI-Dependent Regulation of Sensory Gene Expression Mediates Experience-Dependent Plasticity in the Operating Range of a Thermosensory Neuron

Sensory adaptation represents a form of experience-dependent plasticity that allows neurons to retain high sensitivity over a broad dynamic range. The mechanisms by which sensory neuron responses are altered on different timescales during adaptation are unclear. The threshold for temperature-evoked activity in the AFD thermosensory neurons (T*(AFD)) in C. elegans is set by the cultivation tempe...

متن کامل

Silicon synaptic adaptation mechanisms for homeostasis and contrast gain control

We explore homeostasis in a silicon integrate-and-fire neuron. The neuron adapts its firing rate over time periods on the order of seconds or minutes so that it returns to its spontaneous firing rate after a sustained perturbation. Homeostasis is implemented via two schemes. One scheme looks at the presynaptic activity and adapts the synaptic weight depending on the presynaptic spiking rate. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of vision

دوره 13 10  شماره 

صفحات  -

تاریخ انتشار 2013